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Abstract

This paper reports a numerical study of double-diffusive convective flow of a binary mixture in a porous enclosure subject to localized heating
and salting from one side. The physical model for the momentum conservation equation makes use of the Darcy—Brinkman equation, which
allows the no-slip boundary condition on a solid wall to be satisfied. The set of coupled equations is solved using the SIMPLE algorithm. An
extensive series of numerical simulations is conducted in the range of —15 < N < +14, 1073 <Le< 102, 108 < Da < 102 and 0.125 <L<
0.875, where N, Le, Da and L are the buoyancy ratio, Lewis number, Darcy number and the segment location. Results for a pure viscous fluid
and a Darcy (densely packed) porous medium emerge from the present model as limiting cases. Streamlines, heatlines, masslines, isotherms
and iso-concentrations are produced for several segment locations to illustrate the flow structure transition from solutal-dominated opposing to
thermal dominated and solutal-dominated aiding flows, respectively. The segment location combining with Lewis number is found to influence
the buoyancy ratio at which flow transition and flow reversal occurs. The computed overall Nusselt and Sherwood numbers provide guidance for

locating the heating and salting segment.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of flow caused by the combined influence of ther-
mal and mass buoyancy forces through porous medium has
been motivated by its importance in many natural and indus-
trial problems. Some of these are the migration of moisture
through air contained in fibrous insulation, chemical transport
in packed-bed reactors, melting and solidification of binary al-
loys, grain storage, food processing and storage, contaminant
transport in ground water, to name just a few. Relative to a
large volume of published studies on this phenomenon in pure
fluids, the thermosolutal convection in porous media has re-
ceived only limited attention. A comprehensive review of the
literature concerning double-diffusive natural convection in a
fluid-saturated porous medium may be found in the book by In-
gham and Pop [1]. The literature review indicates that double
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diffusive natural convection in vertical enclosures completely
filled with fluid-saturated porous media has been the subject of
a vast number of studies. In these studies, the following bound-
ary conditions (imposed along the vertical boundaries) have
been studied,

e Subject to constant temperature and concentration, such as
Refs. [2-11].

e Subject to uniform heat and mass fluxes, such as Refs. [12—
18].

e Subject to uniform heat/mass fluxes and constant temper-
ature/concentration simultaneously (mixing Dirichlet and
Neumann boundary conditions), such as Refs. [12,19].

Besides, the linear distributions of temperature and concen-
tration along the vertical side have been considered by Kumar
and his co-authors [20,21]. In fact, many engineering systems
may be characterized by double-diffusive behavior induced by
concentrated heat and solute sources on one side, such as build-
ing construction elements with passive solar heating and conta-
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Nomenclature

AR aspect ratio (W/H)

B dimensionless length of segment (b/H)
D mass diffusivity ............ ... ... m?/s
Da Darcy number (K /H 2)
g gravitational acceleration ................. m/s>
H height of the enclosure ...................... m
k thermal conductivity of the porous

medium .............coviiiiiiiinn... W/(mK)
K permeability of the porous medium .......... m?
L dimensionless position of segment (//H)
Le Lewis number (/D)
N buoyancy ratio (Eq. (13))
Nu overall Nusselt number (Eq. (15))
P fluid pressure ...t N/m?

Pr Prandtl number (v/a)

Ra thermal Rayleigh number (Eq. (13))

s dimensional mass fraction

Sh overall Sherwood number (Eq. (15))

T tEMPErature . ...........o.ueeeinnneeennnnne.. K
u velocity components in x direction ......... m/s
v velocity components in y direction ......... m/s
w width of the enclosure ...................... m

X,y Cartesian coordinates ....................... m
Greek symbols

o thermal diffusivity ....................... m?/s
B thermal expansion coefficient .............. 1/K
Bs expansion coefficient with mass fraction

A difference value

v kinematic viscosity ...................... m?/s
P fluiddensity .............. ...l kg/m?
T dimensionless time (Eq. (7a))

[0)] generic variable (U, V, T or §)

v dimensionless streamfunction

& dimensionless heatfunction

n dimensionless massfunction

Subscripts

max, min maximum, minimum

0 reference value or location

S solutal

t thermal

Superscripts

* dimensional variable

minant infiltration, hazardous thermo-chemical spreading, solar
pond and liquid fuel storage tank. Though it has been received
extensive attentions in pure natural convection heat transfer [22,
23] and for enclosures subject to cross gradients of temperature
and concentration [24,25], to the best of the authors’ knowl-
edge, there are few published results about the double diffu-
sive natural convection in a vertical porous enclosure partially
heated and salted from one side [26].

Additionally, in previous works, the porous medium was
modeled using the Darcy flow model [2,4,5,7,10,12-24,26,27].
Darcy’s Law is a good approximation for low-porosity media.
However, for large values of Darcy number, Darcy’s model
may over-predict the convective flows because it cannot ac-
count for the inertia effects and the no-slip boundary conditions
on rigid boundaries. Recently, the Darcy—Brinkman formula-
tion has been used to study the influence of the Darcy number
on the double-diffusive natural convection within a rectangular
porous cavity [3,6-9,11]. It was found that the behavior of the
thermosolutal flow in porous media was different from the be-
havior assessed for fluid. The porous medium considered here
is thus modeled according to the Darcy—Brinkman formulation.

In order to delineate the characteristics of fluid flow and the
associated heat and mass transfer in the porous enclosure, pre-
ceding authors presented diverse solution methods, including
scale analysis [2,3,7,13], closed-form analytical solutions [12—
14,16-18] and full numerical solutions [2-24,26]. Due to con-
straints of scale analysis and parallel flow approximation, dis-
crete numerical experiments would be conducted to study the
double diffusive natural convection occurring inside this porous
cavity. Simultaneously, visualization of the heat and solute

transports, using streamlines, heatlines and masslines [10,25-
30], would be conducted in the present work.

The specific problem considered here is the study of dou-
ble diffusive convection within a square enclosure subject to
the heating and salting segment on one side. In following sec-
tions, the physical model and mathematical formulation for the
problem is first given. Subsequently, a numerical simulation of
the full governing equations is carried out to study the transport
structures and heat/mass transfer rates. Finally, the results from
the numerical computations are discussed in detail.

2. Physical model and problem statements

The physical domain under investigation is a two-dimen-
sional fluid-saturated Darcy—Brinkman porous enclosure (see
Fig. 1). The rectangular enclosure is of width W and height H,
and the Cartesian coordinates (x, y), with the corresponding ve-
locity components (i, v), are indicated herein. It is assumed that
the third dimension of the enclosure is large enough so that the
fluid, heat and mass transports are two-dimensional. The top
and bottom boundaries of the enclosure are thermally insulated
and impermeable. At the right wall a heating and salting seg-
ment of length b is subjected to higher and constant temperature
and concentration, ¢#; and s, while the rest of it is insulated and
impermeable. The distance between the center of the heating
and salting segment and the bottom wall is /, such that when
| = H/2 the segment is centrally located at the right sidewall.
The opposing vertical wall is maintained lower temperature and
concentration constants, #y and so. Gravity acts in the negative
y-direction.
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Fig. 1. Flow configuration and coordinate system.

The porous matrix is assumed to be uniform and in local
thermal and compositional equilibrium with the saturating fluid.
Thermophysical properties are supposed constant. The flow is
assumed to be laminar and incompressible. Viscous dissipation
and porous medium inertia are not considered, and the Soret
and Dufour effects are neglected. Density of the saturated fluid
mixture is assumed to be uniform over all the enclosure, ex-
ception made to the buoyancy term, in which it is taken as a
function of both the temperature ¢ and concentration s through
the Boussinesq approximation,

p = po[1 = Bi(t —10) — Bs(s — 50)] 6]

Where pg is the fluid density at temperature ¢y and concen-
tration sg, and B; and Ss are the thermal and concentration
expansion coefficients, respectively. Subscript O refers to the
condition over the left vertical wall of the enclosure.

By employing the aforementioned assumptions into the
macroscopic conservation equations of mass, momentum, en-
ergy and species, a set of dimensionless governing equations is
obtained as,

U Vv
x a7 =0 )
U dUU VU P \/ﬁazu 22U
e T ax Ty T ax E(W*W)
Pr U
“V RaDa 3)
V. dUV vV P \/ﬁzﬂv 92V
T T ax ey T ar T 5(@*@)
—\/El+(T+NS) o)
Ra Da
aT dUT VT 1 2T 8T
ac Tax Ty WW(WM?) ©)
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at  9X Y  Les/RaPr\9X%2 9Y2

The following dimensionless variables are used [31,32],
(X,Y)Z(xy)’)/H» (U5 V)Z(M,U)/Vr

t=1"/(H/V;) (7a)
P=(p+pogy)/(pVZ). T=(t—1t)/At
S=(s—s0)/As (7b)
Ve = (gBArtH) '/, At =1 — 1o, As=s1—s0 (8)

Where H, V;, H/V;, At, and As are the scales for length, ve-
locity, time, temperature and concentration respectively. The
boundary conditions sketched in Fig. 1 are,

X=0, U=V=0, T=0 S=0 9)
T s
Y=0andl, U=V=0, —=0, —=0
Y Y
(10)
X=ARand L — B/2<Y<L+B/2, U=V=0
T=1, S=1 (11)
X=ARand0<Y<L-B/2, L+B/]2<Y<I
aT 3S
U=V=0 —=0 —= (12)
aX aX

Egs. (2)—(6) indicate that the present problem is governed by
the following dimensionless parameters, namely, Prandtl num-
ber Pr, Darcy number Da, the thermal Rayleigh number Ra,
the solutal to thermal buoyancy ratio N and Lewis number Le
defined as,

Pr=v/a, Da:K/H2, Ra:gﬂtAtH3/va
N = BsAs/BiAt, Le=a/D (13)

Where v is the kinematics viscosity of the fluid, « and D re-
spectively are the thermal and molecular diffusivities of the
combined fluid plus solid porous matrix medium, K is the per-
meability of the porous medium, and g is the acceleration due
to gravity. Since the particle Reynolds number is considered
being less than unity in this work, the Forchheimer inertia term
has been dropped from the momentum equations (3) and (4)
compared with the Darcy and Brinkman terms. The porosity
of the porous layer, the ratios between effective viscosity and
fluid viscosity, and the ratios of the thermophysical properties
of the porous medium and of the fluid, have been implicitly set
to unity [3].

The thermal Rayleigh number Ra is usual when analyzing
the single natural convection heat transfer in porous enclo-
sure [23]. The porous thermal Rayleigh number Ry, defined as
Ri = RaDa, will also be used in the analysis. In addition, the
buoyancy ratio N and Lewis number Le arise when analyzing
the double-diffusive natural convection problems. The buoy-
ancy ratio N denotes the relative strengths of the thermal and
solutal buoyancy forces, and it can be either positive or nega-
tive, its sign depending on the ratio of B¢ and ;. The volumetric
expansion coefficient due to temperature change S; is normally
positive, the water in the range 0—4.1°C being the most frequent
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exception; But the volumetric expansion coefficient for concen-
tration B¢ can be either positive (N > 0) or negative (N < 0),
such as moist air [10]. For the boundary conditions prescribed
by Egs. (9)-(12), the thermal and solute buoyancy effects are
augmented when N is positive, and they are opposed otherwise.
Further, N is zero for non-species effect and infinite for solute-
dominated effect. Combined global heat and solute flows and
negative values of parameter N can lead to multiple solutions
or oscillatory solutions [4,8,14-16,19,24], such situations are
intentionally avoided in the present work.

From the above boundary conditions, Egs. (9)—(12), and
geometry of the enclosure, it appears that the present problem
is simultaneously governed by additional three dimensionless
geometry parameters, cavity aspect ratio AR, length of the heat-
ing and salting segment B and the distance L, which are defined
respectively as,

AR=W/H, B=b/H, L=I/H (14)

The case L = 1/2, B < 1 corresponds to a porous enclosure
with the heating and salting segment located centrally at the
vertical side.

3. Convective transport evaluation and visualization

The overall heat and mass transfer rates across the system
are important in engineering applications. It is appropriate at
this stage to define the Nusselt and Sherwood numbers on the
surface of heat and mass sinks can be written respectively as,

1
as
dy, Sh:/——
X

0

1
/ oT
Nu= | ——
0X

0

Streamfunction and streamlines are routinely the best way to
visualize the convective fluid flow. The dimensionless stream-
function ¥ is defined such that,

ov 14
—=U, —-——=V (16)
aY 0X
The heat and mass transport processes are analyzed through the
heatlines and masslines, respectively [10,25-30]. The heatfunc-
tion and massfunction can be made dimensionless respectively

as [27,29],
& =&"/[kAr], n=n"/[pDAs] (17)

The dimensionless first order derivatives of heatfunction and
massfunction equations can be obtained as follows,

dy (15)
X=0

X=0

oE aT
% o JRaPrUT — °=
Y arr 9X
9k aT
% o JRaPrvT - = 18
9X arr Y (18)
9 39S
% =LeVRaPrus - =
an 39S
9 LevRaPrvS — 22 1
e es/RaPrVS 7 (19)

The & and 7 fields are defined through its first order derivatives,
being thus important only differences in its values but not its

level, which is similar to the flow field defined by Eq. (16).
Thus, we have the freedom to state that,

¥(0,0)=£(0,0)=n7n(0,00=0 (20)

The heat and mass functions are evaluated for visualization
purposes, once known the flow, temperature and concentra-
tion fields, they can be obtained using the solution method for
conduction-type problems [27-30]. Due to the aforementioned
dimensionless form of the heatfunction and massfunction, the
numerical values of such functions along the top horizontal wall
can match global Nusselt and Sherwood numbers respectively,
that is to say, the overall heat and mass transfer rates across the
system would be provided directly by the heatline and massline
on the top wall [28,29]. Strictly, heatlines and masslines can be
used only for two-dimensional steady problems without source
terms. However, considering that, at a given instant, the differ-
ential energy conservation equation without the unsteady term
can be taken to describe the heat transfer problem, the heat-
line concept can be applied without problems to such an equa-
tion [30]. Similar considerations are made for the use of the
masslines for unsteady problems.

4. Numerical technique and code validation

A FVM (Finite Volume method) was used to obtain numer-
ical solutions of the complete governing equations (2)—(6) on
a staggered grid system [33]. In the course of discretization,
the third-order deferred correction QUICK scheme [34] and a
second-order central difference scheme are respectively imple-
mented for the convection and diffusion terms. The SIMPLE
algorithm was chosen to numerically solve the governing dif-
ferential equations in their primitive form. The pressure correc-
tion equation is derived from the continuity equation to enforce
the local mass balance [33,35]. To obtain better convergence
properties, the unsteady terms in these equations are implicitly
treated and hence approximated by backward differencing. For
each time step, the discretized equations are solved using a line-
by-line procedure, combining the tri-diagonal matrix algorithm
(TDMA) and the successive over-relaxation (SOR) iteration.
The permanent solution has been obtained by this false tran-
sient procedure. The iterative procedure is repeated until the
following condition is satisfied,

XX, 195 —
5 1O
Where @ stands for U, V,T and S. The subscript i and j
indices denote grid locations in the (X, Y) plane. A further
decrease of the convergence criteria 10~ does not cause any

significant change in the final results.

Simultaneously, reliable numerical results are obtained by
performing an energy balance at each time step over the physi-
cal domain [22,29]. For a steady flow condition the heat transfer
through each plane X = constant was evaluated at each loca-
tion 0 < X < 1 and compared with that of the input (X = 1)
and the output (X = 0). A similar test was conducted to verify
the overall mass balance. As the horizontal walls are imperme-
able and adiabatic, the thermal and solute conservations of the

<1074 (1)
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two-dimensional isolated and impermeable system illustrated
in Fig. 1 can be written in mathematical forms respectively as
follows [31],

(L+B/2)
T
——| dY—Nu=0
(L-B/2)
(L+B/2) is
——| dY-Sh=0 (22)
X [x=1
(L-B/2)

For most of the results reported here, the energy and mass bal-
ances, Eq. (22), were satisfied to within 0.1%.

In order to resolve the boundary layers along the surfaces of
heat and solute sources, non-uniform grids in X and Y direc-
tion were used for all computations and the grid was clustered
toward the sidewalls, especially for the case of large Le. A sys-
tematic grid independence study was conducted, and then the
final grid resolution of 81 x 81 was selected at the balance be-
tween the calculation accuracy and the speed for AR = 1.

The current numerical technique has been very successfully
used in a series of recent papers, including single-component
natural convection [31,32], conjugate heat transfer [28,29,31,
32], double diffusive natural convection [29] and mixed con-
vection [25] in gaseous enclosures. To further validate the
present numerical code, the double diffusive natural convection
in square uniform porous enclosures has been numerically an-
alyzed. One of the initial numerical studies on double diffusive
natural convection in Darcy porous enclosure was performed
by Goyeau et al. [3], Bennacer et al. [7] and Bourich et al. [24].
For this comparison, solutions presented in Table 1 are obtained
for R = 102—=2.0 x 103, Le =10, 10% in a square cavity where
the two vertical walls are maintained at uniform and different
temperatures and concentrations, while the horizontal walls are
impermeable and adiabatic. In this configuration, the solutal
buoyancy force is not presented (N = 0), but mass transfer is
induced by the thermally driven flow, i.e., heat-transfer-driven

Table 1

573

flows. This means that the temperature field is coupled to the
flow field and not coupled to the concentration field. More re-
sults concerning the Darcy model in the N = 0 situation on a
range of Le and R, values are displayed in Table 1. As expected,
the Nusselt number does not depend on the Lewis number for
a given Ry, since the flow is totally driven by the thermal buoy-
ancy force. On the other hand, the Sherwood number is clearly
seen to increase with increasing Le or R; numbers. In gen-
eral, the results are in good agreement with those of Goyeau
et al. [3], Bennacer et al. [7] and Bourich et al. [24], thereby
providing validation to our simulations.

Uniform heat transfer flux and constant concentration differ-
ence, i.e., mixed boundary conditions, are applied to the vertical
walls. A comparison of the results for heat-transfer-driven flow
may be found in Table 2, for this case the Nusselt number
will also be independent of Lewis number. The agreement be-
tween the present study and Trevisan and Bejan [12]’s results
for mixed boundary conditions is fairly good.

Kumar et al. [20] have employed Finite Element method
to study the combined heat and mass transfer by natural con-
vection in a Darcy porous enclosure. Flow fields computed
by the present code are identical to the steady ones from Ku-
mar et al. [20], particularly for isotherms and streamlines as
R =100,Le=1,N =—4,-1.5,-0.5,0.5, 1.5, 4, and for iso-
concentrations as R; = 100, N =0, Le =0.1,0.4, 1.0, 10, 25,
100. Chamkha and his coauthors [8,9] have employed Finite
Difference method to study the laminar double diffusive con-
vective flow of a binary gas mixture in a rectangular enclo-
sure filled with a uniform Darcy—Brinkman porous medium.
For no inner heat sources, and with Le =1, Pr =0.7, Ra =
10, N = 1.0, 1/Da = 0, 10,103, 10*, the average Nusselt
(Sherwood) numbers obtained by Chamkha [9] are 6.08899,
5.59823, 3.59821 and 1.26309. The corresponding average
Nusselt (Sherwood) numbers obtained with the present code are
respectively 6.0932, 5.6093, 3.6100, and 1.2758, yielding less
than 0.5% difference.

Total Nusselt and Sherwood numbers compared with those of Goyeau et al. [3], Bennacer et al. [7] and Bourich et al. [24] for the case of isotropic porous media on

heat-transfer-driven flows (Darcy model: N =0,AR=1,B=1)

Rt Le
100 200 400 1000 2000 10
Goyeau et al. [3] 3.11 4.96 7.77 13.47 19.90 Nu
13.25 19.86 28.41 48.32 69.29 Sh
Bennacer et al. [7] 3.11 4.96 7.77 13.48 19.89 Nu
13.24 19.83 29.36 48.20 69.08 Sh
Bourich et al. [24] 3.11 4.96 - 13.76 - Nu
13.27 20.02 - 47.40 - Sh
Present work 3.10 4.93 7.71 13.45 20.01 Nu
13.23 19.93 29.76 49.76 72.64 Sh
100 200 400 1000 2000 100
Goyeau et al. [3] 3.11 4.96 - 13.47 19.90 Nu
41.53 61.09 - 140.65 196.62 Sh
Bennacer et al. [7] - - - 13.48 19.89 Nu
- - - 139.93 195.37 Sh
Present work 3.09 4.92 7.71 13.45 20.01 Nu
42.84 63.33 93.78 145.96 210.39 Sh
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Table 2

Numerical results for heat-transfer-driven natural convection in a porous layer with mixed boundary conditions, constant heat flux and constant concentration, along

the vertical sides (Darcy model: N =0,AR=1,B=1)

Sh Nu R
Le
0.1 0.3 1.0 3.0 10.0
Trevisan and Bejan [12] 1.00 1.06 1.69 3.86 7.79 2.29 102
Present work 1.00 1.07 1.69 3.82 7.85 2.27
Trevisan and Bejan [12] 1.04 1.34 3.37 8.61 17.17 6.11 103
Present work 1.04 1.34 3.32 8.40 16.98 6.06
Trevisan and Bejan [12] 1.15 2.11 6.88 18.73 40.72 16.61 10*
Present work 1.13 2.07 6.73 17.95 38.97 16.54

5. Results and discussion

The foregoing analysis indicates that there are eight parame-
ters that could be varied in this study. These are Ra, N, Le, Da,
Pr, AR, B and L. Because of the abundance of parameters, a
full-blown parametric investigation of the problem is unrealis-
tic. The study is limited to a cavity with an aspect ratio of unity,
i.e., a square enclosure (AR = 1). In the actual computations, Ra
is fixed at 107, Pr is set equal to unity, Le is varied from 1073
to 102. The buoyancy ratio N is in the range —15 to 14, cover-
ing the spectrum from solute-driven opposing flows (N <« —1),
to pure heat-driven flows (N = 0) and to solute-driven aiding
flows (N > 1). The Brinkman extended Darcy model has been
used through the study: in the first step, the Darcy number is
fixed at 1077, and then the influence of the Brinkman term
(Da = 1073—-10?) is analyzed. The length of heating and salt-
ing segment B is maintained at 1/4 and its position L would
be varied from 0.875 to 0.125. The coordinates are chosen in
the present work such that counterclockwise (or clockwise)
movement will be associated with positive (or negative) stream-
functions. Due to the thermal and solutal boundary conditions
considered here, the right side wall has a higher temperature and
higher concentration than the left wall. As a result, the direction
of the thermal flow is counterclockwise, whereas the direction
of the solutal flow depends upon the sign of the concentration
expansion coefficient S5 in Eq. (13). Thus the direction of the
solutal flow is counterclockwise for Bs(N) > 0 and clockwise
for Bs(N) <O.

5.1. Combined effect of segment location and buoyancy ratio

The computed streamlines, isotherms, iso-concentrations,
heatlines and masslines with Le = 10 and Da = 107 are plot-
ted in Figs. 2—4 for several combinations of segment location
and buoyancy ratio. The flow directions in the graphs can be
easily identified according to the distributions of temperature
and concentration. The intervals of streamlines, isotherms, iso-
concentration lines, heatlines and masslines are A® = (Ppax —
@Dmin) /16, where @ stands for ¥, T, S, & or 1.

First, the heat-driven flow limit (N = 0) depicted in Fig. 2 is
discussed. For this situation, the ensuing flow is driven solely by
the buoyancy effect associated with the temperature gradients,
while the solutal contribution becomes negligible. As the heat-
ing segment is at the top of the wall (Fig. 2(a)), boundary layers

start at ¥ = 0.75 and the center of rotation is located near the
sink. The flow out the active element is subject to severe restric-
tion imposed by the top wall. Because of this, most fluid flows at
higher speed within the upper half of the enclosure, with weak
flow in the lower one. The isotherms also show steeper gradi-
ents near the heating segment, while the concentration field that
rides on the heat-transfer-driven flow as depicted in Fig. 2 de-
pends to a significant degree on the Lewis number. For the fluid
with relatively high Lewis number (Le = 10 > 1), the thermal
boundary layer is expected to be much thicker than the hydro-
dynamic boundary layer, and the hydrodynamic boundary layer
is either comparable to or thicker than the solute boundary layer.
Additionally, at high Lewis number, the mass diffusivity is low
enough relative to the thermal diffusivity so that the horizontal
intrusion layers lining the top and bottom walls are consider-
ably sharper than their thermal counterparts, the net result is
that the concentration field in the core of the cavity is noticed to
be almost uniform. Heatlines and masslines paralleling to the
top wall indicate that the heat and solute transports from the
source to the upper left wall directly. It is worth mentioning
that Eqgs. (18)—(19) suggest that the mass transport is more af-
fected by the convection as Le > 1. As a result, the masslines of
which the boundary layers and horizontal corridor are thinner
than those of heatlines.

As the segment descends to the center, shown in Fig. 2(b),
the core of the flow eddy is elongated horizontally. The
isotherms are skewed towards the heating segment, and the
temperature and concentration boundary layers start from the
leading edge of the segment and the upper left-hand corner.
The greater displacement of the isothermal bands from the seg-
ment indicates that the rate of heat transfer increases as the
segment is lowered. This increase in heat transfer is associated
with lessened drag across the top wall, and with more symmet-
rical and stronger circulation as illustrated by streamlines. At
this time, the heatlines and masslines gradually exhibit a con-
vex structure, i.e., the transportation path consisting of three
sections: two thin boundary layers along the vertical walls and
one horizontal corridor along the top adiabatic and imperme-
able wall. Within the boundary layer, fluid convection is weak
and hence the diffusion prevails so that the flux lines are of
pseudo-diffusion characteristics, as an illustration, the heatlines
and masslines shown in Fig. 2(b) are perpendicular to the left
wall, which is due to the fact that the potential functions in
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(a) L = 0.875 (b) L = 0.500 (¢)L=0.125

Fig. 2. Streamlines (top), isotherms (top-1), iso-concentrations (top-2), heatlines (top-3) and masslines (bottom) for the situation of heat-driven flow limit (N = 0)
with Le = 10, Da = 107>, (a) L = 0.875, Wmax = 0.0007, ¥pin = 0.0000, &max = 0.277, Emin = —1.067, Jmax = 4.460, min = —5.509; (b) L = 0.500,
Unax = 0.0011, ¥pin = 0.0000, Emax = 0.629, &min = —1.951, Nmax = 9.461, Nmin = —8.145; and (¢) L = 0.125, Wmax = 0.0013, ¥hin = 0.0000, Emax = 0.726,
Emin = —1.869, nmax = 11.484, npin = —7.947.

Egs. (18)—(19) represent the relative strength between convec- a flow circulation oriented along the diagonal joining the left
tion and diffusion. upper and right lower corners has been observed. The fluid mix-
The localized heating is positioned at the bottom of the en- ture heated by the heating segment rises along the right wall

closure covering the lower fourth of the wall shown in Fig. 2(c), and circulates to the left. It transfers its energy and constituent
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(a) L = 0.875 (b) L= 0.50 (c)L =0.125

Fig. 3. Streamlines (top), isotherms (top-1), iso-concentrations (top-2), heatlines (top-3) and masslines (bottom) for aiding flows (N = 8) with Le = 10 and
Da=1073. (a) L = 0.875, ¥max = 0.0007, ¥pin = 0.0000, &max = 0.838, &min = —1.205, Nmax = 2.092, Nmin = —14.255; (b) L = 0.500, Ymax = 0.0014,
Ynin = 0.0000, Emax = 0.875, &pin = —3.138, nmax = 6.571, npin = —22.703; and (c) L = 0.125, Wimax = 0.0019, ¥pip = 0.0000, Emax = 0.580, & = —4.121,
Nmax = 10.004, npin = —23.871.

to the sink by convection and returns to the segment, which has The active area is the same in these cases, while the total di-
also been clearly illustrated by the heatlines and masslines in mensionless exit length downstream of the active zones (Ex)
Fig. 2(c). The isotherms are becoming more vertical, while the varies [25]. Ex has a value of 0, 0.375 and 0.75 in Fig. 2(a),
iso-concentrations are becoming more uniform than stratified. Fig. 2(b) and Fig. 2(c) respectively. Circulation rates increase
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(a) L = 0.875 (b) L =0.500 (c)L=0.125

Fig. 4. Streamlines (top), isotherms (top-1), iso-concentrations (top-2), heatlines (top-3) and masslines (bottom) for opposing flows (N = —10) with Le = 10 and
Da =107, (a) L = 0.875, ¥imax = 0.0000, ¥pin = —0.0016, Emax = 0.000, Emin = —4.167, pmax = 0.013, min = —31.566; (b) L = 0.500, ¥imax = 0.0000,
Ynin = —0.0012, &max = 0.002, &nin = —3.471, nmax = 0.021, nyin = —27.549; and (c) L = 0.125, ¥max = 0.0000, ¥, = —0.0006, &Emax = 0.010,
Emin = —1.795, nmax = 0.117, npyjp = —15.081.

with Ex, Fig. 2(c) gives the highest circulation rates. segment is driven vertically upward, and meanwhile the low

Figs. 3(a)—(c) exemplify typical features of aiding double- concentration at the left-hand wall causes the fluid near it to
diffusive flow (N > 0). When the buoyancy ratio is increased sink. As expected, both thermal and solutal buoyancy effects
above zero the flow near the concentrated heating and salting are augmenting each other and thus they simultaneously accel-
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erate the flow counterclockwise. When the buoyancy ratio is
increased to N = 8 (Fig. 3), the solutal buoyancy force greatly
dominates over the thermal one, mass species dominated aiding
flows arise. As the segment is at the top of the wall, a pri-
mary cell forms in the upper half enclosure shown in Fig. 3(a).
The iso-concentrations show for this case, strong stratification
in the upper region. Simultaneously, distributions of heatlines
and masslines illuminate that the main heat and solute trans-
fers are at the upper quarter of the cavity that accompanies
formation of boundary layers on both sides. As the segment
is at the middle of the wall (Fig. 3(b)), the concentration con-
tours are vertically stratified within the core. Simultaneously,
the resulting flow circulation is progressively restricted to thin
boundary layers; a portion of the fluid in the center of the en-
closure is now stagnant due to the stabilizing (blocking) effect
of the vertical stratification of the density field in this area. As
the segment shifts downward to the bottom of the enclosure
(Fig. 3(c)), the primary cell is skewed toward the segment and
grows in size. As a result, the fluid flows a longer path along
the sink wall, more heat and solute is transferred through the
wall, as demonstrated by more heatlines and masslines reach
the left wall. Correspondingly, as the segment shifts downward
from the top to the bottom, heat and mass transfer is greatly en-
hanced such that Nu increases from 1.205, 3.132 to 4.115, and
Sh from 14.254, 22.657 to 23.835 respectively.

The typical feature of opposing double-diffusive flow
(N < 0) is discussed herein. Fig. 4 provides exemplary results
for a large buoyancy ratio (N = —10). The main contribution
for buoyancy is due to the solutal one, and the fluid near the
sink would be driven upward. The direction of the fluid circula-
tion has been completely reversed and the flow pattern consists
of a primary cell moving clockwise in the cavity. When the
segment is at the top of the wall, a roll cell in the clockwise di-
rection oriented along the diagonal joining the lower left and
upper right corners is observed in Fig. 4(a). The isotherms are
tilted clockwise by the primary cell, while the concentration
contours are stratified within the core region spanned by the
primary cell. It is observed from the heatlines and masslines
that heat and solute flow from the segment to the lower-left
sink through a thin region adjacent to the lower horizontal wall.
This is a direct consequence of the natural convection resulting
clockwise rotating flow. Differing from the convex transport
structures presented in Figs. 2 and 3, the concave thermal and
solutal transport structures arise, including two thin boundary
layers along the vertical walls and one horizontal corridor along
the bottom adiabatic and impermeable wall. As the segment
shifts to the middle of the wall (Fig. 4(b)), a primary clock-
wise flow cell circulates in the lower region of the enclosure.
The isotherms are becoming more vertical in the upper region,
while the iso-concentrations are becoming more stratified than
diagonal in the lower region. The solutal boundary layers along
the lower left wall and the segment are thickening, which is
indicative of decreasing solute transfer across the enclosure.
Thus, when L decreases from 0.875 to 0.5, the total Sherwood
and Nusselt numbers decrease about 20% and 10% respectively.
When the segment is positioned at the bottom of the enclosure,
as shown in Fig. 4(c), a primary roll cell arises in the lower

region of the enclosure. The thermal buoyancy would start to
exert some influence resulting in the flow pattern. More exactly,
a small thermal cell can be presented in the upper right corner
but its magnitude is so small that its presence is not observable
in the streamline patterns of Fig. 4(c). On the other hand, for
solute-dominated opposing flow, the fluid in the boundary layer
adjacent to the segment should move downward from the bot-
tom of the salting segment, while this stream faces the severe
restriction of the bottom horizontal wall. Correspondingly, the
total dimensionless exit length downstream of the active zones
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of buoyancy ratio for the case Le = 10, Da = 10~3 with the element location
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(a) L =0.875 (b) L=0.50 (c)L =0.125

Fig. 6. Streamlines (top), isotherms (top-1), iso-concentrations (top-2), heatlines (top-3) and masslines (bottom) for opposing flows (N = —10) with Da = 1073,
Le =0.1. (a) L = 0.875, Ymax = 0.0000, ¥ppin = —0.0126, Emax = 0.000, &min = —18.980, nmax = 0.000, nmin = —2.522; (b) L = 0.50, ¥max = 0.0000,
Ymin = —0.0109, &max = 0.000, &nin = —17.302, nmax = 0.000, npin = —2.489; and (c¢) L = 0.125, ¥Ymax = 0.0000, ¥pin = —0.0069, &max = 0.009,

Emin = —9.739, max = 0.000, fmin = —1.269.

(Ex) would be markedly changed from the foregoing aiding
cases, i.e., Ex has a value of 0.75 in Fig. 4(a), 0.375 in Fig. 4(b)
and O in Fig. 4(c). As a result, Fig. 4(c) gives the lowest circu-
lation rates (the maximum values of absolute streamfunctions).

The effective heat and solute transport passages become thin-
ner, as a result, when L decreases from 0.5 to 0.125, the total
Nusselt and Sherwood numbers decrease from 2.598 to 1.053,
from 22.371 to 12.761 respectively.
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The combined effect of segment location and buoyancy ra-
tio on the overall Nusselt and Sherwood numbers can be ex-
amined in Fig. 5. The graph clearly indicates that for aiding
flows (N > 0), the transport rates increase with the magnitude
of N, which is independent of segment location. As N is de-
creased below zero (opposing flow), initially the transport rates
are observed to decrease with the magnitude of |N| and be-
come lower when compared with those with aiding buoyancies
for the same numerical values of |N|. As N continues to de-
crease, the transport rates begin to increase because it is the
magnitude of velocity and not the direction that augments the
heat and mass transfer rates. As a result, Nu and S/ tend to be
minimized in the transitional range to the point of flow rever-
sal. The Npp, corresponding to the minimum transport rates, is
seen to depend strongly on the segment location. For L < 0.5,
the overall Nusselt numbers are generally less in the opposing
flow area (N < 0) than for the corresponding N in the aiding
flow range due to the fact that the opposing flow has a lower
flow rate adjacent to the sink than does the corresponding aid-
ing flow case. However, for L > 0.5, the reversal is observed
from the Fig. 5(a). However, the relative difference of Sher-
wood number for corresponding buoyancy ratios is small.

Transitional flow is in fact much more complex than the aid-
ing flow illustrated in Figs. 2 and 3 and the solutal-dominated
opposing flow in Fig. 4. For transitional flow, the thermal and
solutal buoyancy forces dominate separate circulations within
the enclosure. The onset of flow transition has been plotted in
Figs. 5(a) and 5(b), representing the buoyancy ratio at which
intrusion of the thermal dominated cell occurs. Upward move-
ment of the heating and salting segment results in the decreas-
ing of the buoyancy ratio at which this onset occurs. However,
the point of flow reversal from transitional flow to thermal dom-
inated flow first shifts to higher buoyancy ratios and then to
lower buoyancy ratios for increasing L.

5.2. Combined effect of segment location and Lewis number

As N,L and Le equal —10, 0.875 and 0.1 respectively,
the resulting flow presented in Fig. 6(a) is definitely solutal-
dominated with a higher flow rate circulation than that in
Fig. 4(a). The clockwise-rotating cell tilts and spans in the en-
closure; Due to the blocking effect of the vertical stratification
of the density field in this area, a constant temperature ‘blob’
develops with a large portion of the fluid is stagnant within
the core of the enclosure; simultaneously, the heatlines illumi-
nating the anti-natural thermal flow take the similar images as
presented in Fig. 4(a) but with thinner horizontal corridor. With
Lewis number less than unity, the mass transfer process is dif-
fusion dominated. The solutal boundary layer is rather thick,
and the iso-concentration lines are tilted with the segment loca-
tion. The difference between the concentration and temperature
fields is dictated by the Lewis number, in other words, the 7' (£€)
and S(n) fields are identical only in the special case Le = 1 [10,
29]. As Le is decreased to 0.1, the effect of solutal buoyancy
force is strengthened for a constant buoyancy ratio. This is due
to the increased diffusivity of the mass species, which results
in the thickening of the solutal boundary layers. Consequently,
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Fig. 7. Overall Nusselt number Nu (a) and Sherwood number S/ (b) as functions
of Lewis number for the case N = —10, Da = 10~5 with the element location
L as parameter.

the effect of heat on the fluid density does not penetrate as far
as the solutal fluid density effect. Similar observations can be
made when comparing Fig. 6(b) with Fig. 4(b) (L = 0.5). As
the segment shifts to the bottom, the transitional flow (at higher
Lewis number) has completely reversed to the solutal domi-
nated flow illustrated in Fig. 6(c). The solutal boundary layer
becomes thicker and the mass species more diffused. The ma-
jor mass transfer process is mass diffusion within the solutal
boundary layer, while the thermal buoyancy exerts barely influ-
ence on the flow structures.

The Lewis number, which embraces the relative importance
of thermal to solutal diffusion, has a direct bearing on the heat
and mass transfer coefficients. The data in Fig. 7, obtained
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(a) L =0.875 (b) L =0.50 (c) L =0.125

Fig. 8. Streamlines (top), isotherms (top-1), iso-concentrations (top-2), heatlines (top-3) and masslines (bottom) for aiding flows (N = +8) with Da = 1071,
Le = 10.0. (a) L = 0.875, Wmax = 0.0015, Wpin = 0.0000, Emax = 1.527, &min = —2.692, nmax = 10.638, nmin = —23.221; (b) L = 0.500, ¥pax = 0.0062,

Wi = —0.0001, &max = 4.037, Emin = —8.422, Nmax = 58.771, Nmin = —31.521; and (¢) L = 0.125, Winax = 0.0093, Wi = 0.0000, £max = 4.003,
Emin = —10.295, nmax = 77.056, fmin = —33.719.

for N = —10 and Da = 107>, span the Lewis number range
10~3—102. The concentration boundary layers become increas-
ingly thinner as Le increases. As a result, for a given N and Da,
the Sherwood number consistently increases as the Lewis num-

ber increases. However, overall Nusselt number decrease with
increasing Le is due to the fact that the thermal boundary layer
thickness is an increasing function of Le'/? [3]. The role-played
by the segment location on the overall Nusselt and Sherwood
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numbers is also illustrated in Fig. 7. As L is no more than 0.5,
this issue is of singular importance on both transfer coefficients
in the considered Lewis number range, the curves of L < 0.500
generally tend to converge a critical value as Le increases far
greater than unity. However, for Le < 1.0, the flow is mainly
driven by the action of a solutal buoyant force. The effect of
location L on the overall Nusselt number is similar to that of
lower Rayleigh number (pure diffusion regime). Similar obser-
vations can be found for overall Sherwood number due to the
dominated solutal diffusion.

5.3. Combined effect of segment location and Darcy number

In this section, the influence of the porous-medium coarse-
ness (1078 < Da < 10?) on the double diffusion is investigated.
The buoyancy ratio and Lewis number is maintained at 8 and
10 respectively. As Darcy number increases from 107> (Fig. 3)
to 10~! (Fig. 8) with L equaling 0.875, the effect of the vis-
cous forces accounted for in the Brinkman term on the flow
velocity becomes significant. For this moderately high buoy-
ancy ratio (N = 8), a multicellular flow structure is observed in
the lower half of the cavity. The streamlines show that the dy-
namic boundary layers are thinner for the higher value of Da,
and consequently the concentration gradients at the walls are
larger when the Brinkman term becomes significant. The con-
centration field presents the classical stratified structure of the
natural convective flows in enclosures; the isotherms also show
more stratified than inclined. As the segment shifts down, the
aforementioned trends are aggravated.

The effect of varying the Darcy number on the heat and mass
transfer, Nu and Sh are illustrated in Fig. 9 for various segment
locations. As the permeability of the porous medium Da is in-
creased, the boundary frictional resistance becomes gradually
less important and the fluid circulation within the enclosure is
progressively enhanced. Indeed, increasing the Brinkman term
implies that the balance between the Darcy term and the buoy-
ancy force in the boundary layer is progressively replaced by
the balance between a viscous force and the buoyancy term. The
viscous force enhances the velocity at high Darcy numbers. The
results indicate that when Da is large enough, Nu and Sh tend
asymptotically toward constant values that depend on the seg-
ment location. The limit Da — 0 corresponds to a pure Darcy
medium situation which has been studied recently by Zhao et
al. [26]. As a result, Nu and Sh are observed to decrease con-
siderably with decreasing Da toward the pure conduction limit.
This is expected since, in the limit of Da approaching 0, the
Brinkman model reduces to Darcy Law. As the Darcy number is
decreased, the boundary frictional resistance becomes progres-
sively significant and adds to the bulk frictional drag induced
by the solid matrix to slow the convection motion. Indeed, as
comparing Fig. 8 and Fig. 3, it is found that the strength of the
overall convective flow becomes weaker as the value of Da is
made smaller.

6. Conclusions

The problem of double-diffusive convective flow of a binary
mixture inside a vertical enclosure subject to localized heating
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Fig. 9. Overall Nusselt number Nu (a) and Sherwood number S# (b) as functions
of Darcy number for the case N = +8, Le = 10 with the element location L as
parameter.

and salting from one side is numerically studied. Finite volume
method is employed on non-uniform grids for the solution of
the present problem. The obtained heatlines and masslines, for
the double diffusive natural convection in porous medium are
shown to be a very effective way to visualize the paths followed
by heat and solute through this porous enclosure.

A complete range of buoyancy ratios, covering solute-
dominated opposing flow, transitional flow, thermal-dominated
flow and solute-dominated aiding flow, is examined for several
segment locations. Upward movement of the segment results in
the decreasing of the buoyancy ratio at which the onset of tran-
sitional flow occurs. Overall heat and mass transfer rates tend
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to be minimized in the transitional range to the point of flow
reversal for any segment location.

Effects of Lewis number and Darcy number on the dou-
ble diffusive convection have also been examined for several
segment locations. Reversion of transitional flow to the solutal-
dominated flow tends to occur at higher Lewis number for
lower-level segment locations. As the permeability the porous
medium is decreased, the temperature and concentration con-
tours become more parallel to the vertical walls, indicating the
approach to quasi-conduction regime. The main contributions
of decreasing the Darcy number are predicted to be a flow re-
tardation effect and a suppression of the overall heat and mass
transfer in the enclosure.
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